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Abstract. A derivation, based on first principles, is provided of the Bhatia-March formula 
for S,,(O) of a binary fluid. A natural simple generalisation (a completion of the underlying 
van der Waals-like description) is then proposed. Finally, the application to Na-Cs is 
considered and the generalised formula is shown to provide a good description not only of 
S,,(O) but of the excess internal energy and entropy. 

1. Introduction 

Bhatia and March (1975; hereafter BM) introduced a formula for describing the con- 
centration fluctuations of a binary mixture, and this has served well, over the years, as 
an aid to the interpretation of observed data. It has, however, a somewhat empirical 
(even obscure) basis, rooted as it is in lattice gas models (Longuet-Higgins 1951, Gug- 
genheim 1952) and early polymer theory (Flory 1942). Insection 2, however, we indicate 
a more fundamentally based approach to the problem and rederive the formula in a 
more compact form. 

From the new standpoint, the BM formula appears to rely on an incomplete van der 
Waals model. When the latter is completed, a generalised BM result is obtained (section 

The liquid Na-Cs system is used for illustrative purposes in section 4 and a summary 
3). 

of our work is provided in section 5 .  

2. Derivation of the Bhatia-March formula 

Consider a simple binary fluid containing c,N = cN atoms of type 1 and c2N = (1 - c ) N  
atoms of type 2, all in a total volume Q,  at temperature T.  Then the concentration- 
concentration fluctuation function S,,(O) is defined by 

where, in standard notation, the Gibbs free energy is 

The right-hand side of equation (1) is the Darken (1967) stability function, and its linkage 

NkBTS&'(0) = ( d * G / d ~ ~ ) ~ , ~ , ~  (1) 

(2) G =  E - T S +  PQ. 
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to fluctuation theory is due to Bhatia and Thornton (1970). We can substitute equation 
(2) into equation (1) to obtain 

NkBTS;' (0)  = ( a 2 E / a c 2  - T a 2 S / 8 c 2  + P 8 2 Q / 8 ~ 2 ) p 5 T , N  (3) 
and the various terms of this equation will be examined below. 

given by u&r) and the radial distribution functions by g i j ( r ) .  Then, if 
Let us now consider the fluid microscopically. Suppose the atomic interactions are 

(4) w . .  11 = J ui,(r)gij(r) d r  

the internal energy is? 

E = INkBT + (N2/2Q)(C:Wll + 2ClC2W12 + C i W 2 2 )  

=$NkBT - (N2 /2Q)c lc2w, ,  + (N2/2Q)(c lw11 + ~ 2 ~ 2 2 )  ( 5 )  

(6) 

where 

w,, = w11 - 2w12 + w22. 
Unfortunately, we cannot write down an equally explicit and straightforward 

expression for the entropy. However, general theory tells us that 

S = S c  + S g a s ( Q  1 + S i n t  

S ,  = -NkB(c ,  In ~1 + ~2 In c2) 

(7) 

(8) 

(9) 

where 

and 

Sgas(Q) = NkB{$ f lIl[(a/N)(mkB T/2?Gh2)3i2]} 

where m = m?lm;:, the m, being the atomic masses. Sint arises from the interactions. 

the following assumptions: 

( i  = 1,2)  is the volume of N atoms of pure i at temperature T and pressure P .  

The terms of equation (3) may now be evaluated using equations ( 5 )  and (7) under 

(i) There is no excess volume of mixing, i.e. Q = c l Q 1  + c2Q2 = Qo, where Qi 

(ii) Sint is, at most, linear in concentration, thus making no contribution to (3). 
(iii) The wjj are independent of concentration. 

Thus, we obtain 

Si$(o) = ( N Q ~ Q ~ / Q ~ ) ( W / ~ B T )  f l/C(l - C) + (Q1 - (10) 

As invariably quoted and used, the BM formula appears more complicated than 
equation (lo), but simple algebra shows that the two are, in fact, equivalent in form. 

t We adhere to the convention invariably adopted in such work hitherto by considering insulators explicitly. 
In the case of metallic systems, we can expect the volume energy terms (Hasegawa and Watabe 1972) to 
contribute. Contributions linear in c do not affect any of the properties of subsequent interest (Scc(0), A E ,  
AS), while higher-order contributions must be assumed absorbed into the w,, of equation ( 5 ) .  
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Equation (10) is somewhat more general in that only the first term of equation (11) ,  
namely w,, (defined by equation (6)), can be identified with the 'interchange energy' 
parameter of the BM formula. The final part of (11) is newt. In practice, if we confine 
our attention to fitting a measured S,,(O) versus c curve, we fit w instead of w,, and the 
same comparison with experiment is obtained. 

Actually BM, on the basis of the then existing theories, thought that the Flory entropy 
expression and, therefore, their S,,(O) formula might be valid only for size ratios 
Q2/Ql b 2. The present discussion, however, gives all size ratios an equal theoretical 
status. 

It is next instructive to examine the excess internal energy and the excess entropy, 
and we begin with the former. If assumption (iii) holds, and the wii are independent of 
concentration, then the pure liquid energies are 

E j  = $ N k B  T + ( N 2 / 2 Q j ) w j j  ( i  = 1, 2).  (12) 
Then, by equation ( 5 ) ,  the excess energy is 

A E E E - c ~ E ~ - c ~ E ~  

= - ( N 2 / 2 Q ) ~ 1 ~ 2 w , ,  + iN2C1wIl( l /Q - l / Q I )  

+ &N2C2W2,(1/Q - l/Q,) (13) 

A E  = -(N2/2Qo)c1c2w. (14) 

and so, on invoking assumption (i), we have 

The Flory excess energy term is obtained if we drop (unreasonably from the present 
point of view) the final two contributions to equation (13); then w,,rather than w appears 
in the BM formula. 

Turning next to the excess entropy and equation (7), we see that, if assumptions (i) 
and (ii) hold, then 

AS E S - CIS, - ~ 2 S 2  = S, + AS,,,(QO) 

A S g a s ( Q 0 )  = " m / N )  - c1 ln(QZ,/N) - c2 ln(Q2/N>). 

(15) 

(16) 

where 

As shown by Hoshino (1980) and Visser et al(1980), this expression is equivalent to the 
Flory excess entropy. 

3. The generalised Bhatia-March formula 

The treatment of the internal energy above, by taking wij constant, is very much in 
the spirit of van der Waals. In this way, we obtain an account of the strength of the 
interatomic potential tails. But, in a van der Waals approach, we should also incorporate 
the atomic core sizes (the excluded-volume effect) through the entropy. Clearly this has 

t In a recent paper, Gonzalez and Silbert (1988) present the results of numerical calculations of model binary 
alloys within the mean spherical approximation. The main conclusion of this work is that, whereas many 
structural aspects are sensitive only to the ordering potential, the thermodynamic properties and, specifically, 
S,,(O) are sensitive to all the potentials used. To the extent that w,, can be identified with the integrated 
ordering potential (they are not exactly the same thing), the conclusions of that work and ours are similar. 



7348 K Hoshino et a1 

not been done so far, and we need to take some account of Sint in equation (7). In doing 
so below, we justify more fully a method that has been introduced and exploited by 
Visser et a1 (1980), Neale and Cusack (1984) and Bhatia and Young (1984). 

For entropy interpretation purposes, the hard-sphere model has proved useful in the 
past and we turn to it again here. In terms of the effective diameters, o1 and 02, an 
accurate expression for Sint = S t ( Q ,  ol, oz) is known (Young 1977)T and equation (7) 
becomes 

S = S, + S,,,(Q) + S;;t* (17) 

Note that the actual volume 52,  rather than the ideal volume Qo, appears in equation 
(17); experience has shown that the recognition of a non-zero excess volume is a vital 
matter. 

The excess volume will also affect E and PQ in equation (2). However, under normal 
circumstances ( P  = 1 atm) the correction to PQo is completely negligible. In the former 
case, we already have a non-trivial description via the wii and it seems unreasonable, 
within the present very simplified context, to introduce a further refinement (and more 
disposable parameters; see equation ( 5 ) )  at this point. We therefore adhere to the 
development of the previous section, except for the entropy. 

With the above corrections inserted, we recalculate equation (3) and find 

the BM result being given by equation (10). The diameters are normally fitted to the 
experimentally deduced pure liquid entropies and assumed to be concentration inde- 
pendent. In this approximation, therefore, no new free parameters are introduced. But 
we require more measured input, namely the pure liquid entropies and the actual alloy 
volumes. 

Finally, let us note for future reference, that the excess entropy of mixing can be 
written, on the basis of equation (17), as 

AS = (AS)F + NkB ln(Q/Q0) + Aspit 

Askt =Skt(Q,c,  o1,02) -cis!:t(Qi, 01, 0 1 )  -CzSkt(Q2,02,oz>. 

(19) 

where (AS), is the Flory expression (15) and 

(20) 

4. Application to Na-Cs 

It is useful to provide an illustrative example and we do so by considering Na-Cs. We 
consider only the most simple of approximations (constant w, constant ol, oz); for more 
sophisticated calculations, the reader is referred to Visser et a1 (1980) and Neale and 
Cusack (1984). 

The relevant experimental work on liquid Na-Cs has been done by Ichikawa et a1 
(1974), Huijben et a1 (1977,1979) and Neale and Cusack (1982). The data are in broad 
agreement and we will, in the following, consider mainly the Neale-Cusack (NC) results, 
which are most complete for our purpose. 

t In the notation of that paper, to which the reader is referred for further details, SF, = S, + S, + S,,,,. 
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Table 1. Na-Cs calculation input data”. 

Temperature, T = 383 K 

Cs specific volume, Q2 
Energy parameter, w 
Na core diameter, U )  

Cs core diameter, U, 

a The core diameters reproduce the experimentally determined pure liquid entropies, SI = 
7.893NkB, S2 = 12.245NkB (Hultgren eta1 1973). The volume data of figure 1 complete the 
input information. 

Na specific volume, Q I = 41.3 A’ 
= 123.3 A‘ 
= -6.9 eV A’ 
= 3.21 A 
= 4.48 8, 

The input data to the present calculations are given in table 1 and figure 1. Table 1 
contains w, the only free parameter of the theory, this having been judiciously chosen 
so as to achieve, in the following analysis, good overall agreement with experiment. 
Figure 1 shows the curve of absolute volume per atom. The departure from linearity is 
quite small, and indeed, for some purposes, it is negligible. But, as we will see, for the 
entropy it is necessary to include it. 

With the above data, we now calculate the various thermodynamic curves and 
compare them with experiment. Figure 2 shows AE,”, calculated using equation (14) 
with w = -6.9 eV A3; it will be seen that the agreement with the measured data is good. 
The occurrence of a constant w ,  independent of concentration, is indicated by the work 
of Neale and Cusack (1984) as well as by that of Bowles et a1 (1989). Moreover, despite 
the rather different approach of the latter authors, very much the same value was 
obtained. 

Figure 3 shows AS/NkB calculated using equation (19) with 0, and o2 as in table 1, 
and here the agreement with experiment is also good. This is in contrast with the Flory 
result (equation (15), i.e. equation (.l9), first term). Clearly, the effect of the new 
entropy terms in this particular system is to cancel almost exactly the Flory term, 
AS,,,(Qo), in equation (15), so that a near-ideal entropy is obtained, in agreement with 
experiment. 
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Figure 3. Excess entropy per atom versus con- 
centration: -, theory (equation (19) with U , ,  

u2 as in table 1) ;- .-.-, Flory theory (equation 
(15), i.e. equation (19), first term); ----, ideal 
(equation (8)); 0, experiment (Neale and Cusack 
19821. 

Figure4. S,,(O) versus concentration: -, theory 
(equation (18) with w = -6.9 eV A'and U , .  u2as 
in table 1); ----, ideal (= c(1 - c)); 0, exper- 
iment (Neale and Cusack 1982). 

We finally consider S,,(O). With the same parameter, w = -6.9 eV A3, already used, 
equation (18) yields the theoretical curve shown in figure 4. There is a considerable 
measure of agreement with the experimentally deduced NC results. 

Actually, if we use the unmodified Flory entropy (equation (15)) and thereby 
describe S,,(O) by the original BM formula (equation (lo), i.e. equation (18), first term), 
we can achieve, as BM showed, a comparison between theory and experiment that is as 
good as that shown in figure 4. But this requires us to choose w = -8.1 eV A3, which 
provides via equation (14) excess energies that are about 17% too high (Neale and 
Cusack 1984). 

It is, perhaps, appropriate at this point to remark that there is an existing refinement 
of the BM approach (Alblas et a1 1983, Singh and Bhatia 1984) that can simultaneously 
achieve a satisfactory energy, entropy and S,,(O). This starts from the Gibbs free energy, 
formally defined by equations (2), (5) and (7), but now with T-dependent interaction 
parameters. We thus obtain terms in the separate energy and entropy contributions 
additional to those seen in equations (5) and (7). This development appears, however, 
to have little in common with that of the present paper. 

5. Summary 

We have, we believe, placed the BM formalism within a more rigorous framework. In 
doing so, we have identified it as of incomplete van der Waals type. By this, we mean 
that the internal energy is described suitably by a mean-field parameter, but the entropy 
takes no account of the atomic core sizes (the excluded-volume effect). When the latter 
effect is suitably incorporated, we obtain a generalised formalism that can provide, 
simultaneously, realistic internal energies, entropies and S,,(O) values. 

The formalism is tested on Na-Cs and excellent accounts of the excess internal energy 
and entropy are obtained. The calculated and experimentally based S,,(O) are also found 
to be in rather satisfactory agreement. 
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